
Ø 个人简介
羞羞漫画
副教授,硕士生导师;湖北省“楚天英才计划”楚天学者入选者。主持了国家自然科学基金青年项目、湖北省自然科学基金青年项目等3项项目,参与国家自然科学基金面上项目2项;并在SIAM Journal on Mathematical Analysis、Journal of Differential Equations等国际权威期刊上发表学术论文10余篇。
办公地点:四号楼101
电子邮箱:[email protected] [email protected]
Ø 教育经历
2014年9月--2018年6月:湖南科技大学 本科
2018年9月--2023年6月:华南理工大学 硕博连读 (导师:朱长江教授)
Ø 工作经历
2023年7月--2025年12月:羞羞漫画
讲师
2026年1月--至今:羞羞漫画
副教授
Ø 研究方向
流体力学中的非线性偏微分方程的数学理论
Ø 代表性成果
1. Zhang Nangao, Zhu Changjiang*, Zhu Limei, Convergence to nonlinear diffusion waves for solutions of blood flow model,SIAM Journal on Mathematical Analysis, 56(2024), 6768-6797 .
2. Zhang, Nangao, Zhu, Changjiang, Convergence to nonlinear diffusion waves for solutions of M1 model, Journal of Differential Equations, 320(2022), 1–48.
3. Dong, Zehan, Zhang, Nangao; Zhu, Changjiang, Convergence to nonlinear diffusion waves for solutions of hyperbolic-parabolic chemotaxis system, Journal of Differential Equations, 377(2023), 332–368.
4. Zhang, Nangao, Zhu, Changjiang, Long-time behavior of solutions to the M1 model with boundary effect, Discrete and Continuous Dynamical Systems- Series A, 43(2023), 1824–1859.
5. Zhang Nangao, Zhu Changjiang*, Optimal decay rates of solutions to hyperbolic conservation laws with damping, Zeitschrift für Angewandte Mathematik und Physik, 73(2022), No. 34, 32 pp,
6. Zhang Nangao, Zhu Changjiang*, Optimal decay rates of the solution of the linearized M1 model, Communications in Mathematical Sciences, 19(2021), 2119–2138.
7. Liu Fengling, Zhang Nangao, Zhu Changjiang*, Convergence to diffusion waves for solutions of 1D Keller-Segel model, Mathematical Methods in the Applied Sciences, 46(2023), 3674–3702.
8. Zhang Nangao*, Optimal convergence rates to diffusion waves for solutions of p-system with damping on quadrant, Journal of Mathematical Analysis and Applications, 512(2022), No. 126118, 10 pp,
9. Zhang Nangao*,Optimal time decay of solution to the M1 model, accepted by Proceedings of the American Mathematical Society,(2025).
10. Zhang Nangao*, Asymptotic behavior of solutions to compressible Euler equations with time and space dependent damping, accepted by Journal of Mathematical Fluid Mechanics,(2025).
欢迎对科研方向感兴趣的本科、硕士同学加入!
一起发现新问题,掌握新方法,实践新方案,拓展新前沿!